
D FILE COPY

NASA Contractor Report 182080

ICASE Report No. 90-52

00

SHOCK-LAYER BOUNDS FOR A SINGULARLY
PERTURBED EQUATION

Jeffrey S. Scroggs

ELECTEOC 0T03 1990 ][

Contract No. NAS1-18605 0
August 1990

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

DISTBIBUfflON STATEMET A

Approved for public releawe,
Distribution Unlimited

Nalional Aeronautics and 0 .
Space Adminitralion to" ' "

Langley Research Center
tlampton, Virginia 23665-5225



SHOCK-LAYER BOUNDS FOR A SINGULARLY
PERTURBED EQUATION

Jeffrey S. Scroggs*
ICASE, MS 132C Accesson For

FTElIS GRA&I

NASA Langley Research Center' -Tic TB

Hampton, VA 23665 i .ctnced 0

Distribution/

iAvailability Codes

Avaifad/or
!Dist Special

ABSTRACT

The size of the shock-layer governed by a conservation law is studied. The conservation

law is a parabolic reaction-convection-diffusion equation with a small parameter multiplying

the diffusion term and convex flux. Rigorous upper and lower bounding functions for the

solution of the conservation law are established based on maximum-principle arguments.

The bounding functions demonstrate that the size of the shock-layer is proportional to the

parameter multiplying the diffusion term

* Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.



1. Introduction. Upper and lower bounding functions are presented. The bounds

demonstrate that solutions to the singularly perturbed hyperbolic partial differential equa-

tion

ou, 01(u) 02u (,(1) P[ul:= + a- C R(u)= 0

t O x_ OX2

with a pre-existing shock have shock-layers of width O(e). The analysis is performed in the

style of Howes [4, 5, 6]. It begins with a multiple-scales asymptotic analysis. This provides

the appropriate local scalings and indicates candidate forms for a bounding function. A

bounding function is constructed from these candidates. Maximum principle arguments are

then used to rigorously establish bounds for the solution. In this way, upper and lower

bounds for solutions to equation (1) are established for any e.

This presentation will concentrate on a comparison between solutions to (1) and solutions

to the corresponding reduced equdtion

(2) Po[U] := - + f(U) -R(U)=0

TOt ax

obtained by setting e = 0. The result will be a bound on the difference between the solution

to this reduced equation and the solution to equation (1).

There are implications of this analysis for the computational aspects of the problem

as well as for the physics modeled by conservation laws. The bounding functions result in

an upper bound on the size of the shock-layer. They isolate the internal-layer region in

which viscosity is important from the convection-dominated outer region. This validates the

assumption that the lack of resolution of the physics in the shock-layer effects the solution

in smooth regions very little under certain circumstances; thus, the hyperbolic equation (2)

may be substituted for equation (1).

This work sharpens the bounds of Howes [5, 7] which apply in a more general setting.

The shock-birth region will not be studied here.

2. Problem Specification. This paper is concerned with presenting bounds for the

solution u to the quasilinear parabolic equation (1) on the domain

(3) D := {(x,t)10 < x < b, 0 < <T},

subject to

(4) u(x,0)=g(x), 0<x<b;

(5) u(,t) = a(t), 0 < t < T; and
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u(b,t)= O(t), 0<t<T.

Let the portion of the boundary along which the data is specified be denoted by

1 := {(x,t)10< < b, t = 0}U{(x,t)10 < t < T, X = 0,b}.

The boundary and initial data are continuous and sufficiently smooth so that u is
uniquely defined [1]. In particular, the boundary data a and j6 have derivatives bounded
independent of e. Corner-layers in u are prohibited by assuming the compatibility conditions

(7) a(0) = g(O), g(b) = 3(0)

(8) -+ f(g) - R(g) = 0, for (x, t) = (0,0);

dt dx

and
(9)dO d(9) d- ( g ) - R(g) = 0, for (x, t) = (b, 0).

dt dxg

For simplicity, it is assumed that all boundaries are inflow boundaries; hence, a(t)f'(a(t)) >
0 and /(t)f'(f9(t)) < 0. Also assume that there is a single shock-layer in the initial data that
is contained in an O(cln(e)) neighborhood 7, of (Fo, 0), where F0 is the location of the shock
in U at t = 0. The domain of the initial viscous-layer is r := {(x,t)It = 0 and Ix - ro! <
cln(c)}.

The solutions to the parabolic problem will be compared to a weak solution of the
hyperbolic equation (2). Let U be the weak solution of (2) with boundary data (5-6) that is
the so!ution to (1) in the limit as c > 0 tends to zero (denoted as c 1 0). The initial condition
will reflect a shock eminating from (t, x) = (0, F0 ). Thus, the initial condition for U is

(10) U(x,0) = go(x), 0 < x < b,

where the difference g - go is zero except in 7ro. The relationship between g and go in 7ro will

be discussed in more detail in the proof of Theorem 4.4.

Let the path of the shock in U be given by the curve (x, t) = (I(t), t). It is natural to
describe the values of U at the shock as

UR(t) = lim U(x,t)
x~r(t)

and

UL(t) = lim U(x,t).
2lr(,)



For ease of presentation we will assume that UL > UR. The solution U to (2) will satisfy the
entropy condition

(11) UL(t) > S(t) > UR(t)

where the speed S(t) of the shock is given by the Rankine-Hugoniot jump condition [8]

(12) S(t) = f(UL(t)) - f(UR(t))
UL(t) - UR(t)

The entropy condition may be written as

(13) f1(t) = UL(t) - UR(t _> o,

for a constant ILO > 0 that is independent of e. It is assumed that the shock is part of the

initial data and exists for the entire domain considered; thus, J(t) is defined for all t > 0.

Notice that the initial condition for P may be obtained from go and that P satisfies the

ordinary differential equation dP(t)/dt = S(t). Thus, r is uniquely defined.

3. Asymptotic Analysis. Some of the relevant physics is presented here. The discus-

sion includes introducing the appropriate scales and equations when equation (1) is used to

model a shock-layer. These results are obtained using a heuristic analysis that treats E as a

small parameter. The results are exploited in the construction of the bounding function and

are made more rigorous in Section 4. First some of the properties of the inviscid solution

will be discussed.

3.1. Derivation of Bounding Function. In this section we will derive a canonical

form for the bounding function. The assumptions utilized in the derivation are used only to

motivate the equation governing the canonical form. The assumptions are not necessarily

valid. The validity of the bounding function will be established when it is used in Section 4.

The canonical form for the solution of the viscous problem is derived here. Large gra-

dients in the neighborhood of a shock-layer are resolved by using the spatial scale 1/E. This

scale is combined with shock-following to obtain the internal-layer coordinates

x-P
x r and r = t.

C

The transformation defined by these coordinates is applied to equation (1) to obtain

S(t) -c - + (a)

where it((, r) = i(x, t). This suggests the regular expansion

2= to + fill +
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for fi. We assume that this expansion is a priori valid in the shock layer and use identification

in e to obtain the equation
f (o) - S(t) _o _ o =

for flo. This equation is integrated with respect to C once to obtain

- S(t)Oo - a = const.

To make this equation easier to solve, we approximate the term S - f/io by r(', and we

set the constant in the right-hand-side of the above equation to zero. The solution to this

equation is the exponential

(14) exp(-rcp+,).

Since the magnitude of the bounding function should be decaying away from the shock-

layer, we assume . > 0, and substitute [CI for C. This is the candidate form for the bounding

function.

Guided by the form (14), let the general form for the bounding function W be

(15) w = at + e -K .

Here (r(t), x, e) is a linear measure of the distance between (x, t) and (r(t), t). The power
of the distance function is some positive p, and 0 is a non-negative function of t.

4. Comparison Theorem. In this section we will show that the function w + U is an

upper bound for u. The statement of this result is in the form of a comparison theorem.

Several lemmas needed in the proof of Theorem 4.4 will be presented first. The first lemma is

a maximum principle stated in the form most useful for the proof of the theorem. Lemma 4.2

demonstrates how to choose the pardmeters in w so that the maximum principle is satisfied

within each of the regions Q0(t) := {xo < x < r(t)} and Qi(t) := {jxr(t) < x}. Finally, we

see how the parameters in w can be chosen to satisfy the maximum principle on (x, t) = (r, t).

4.1. Maximum Principle. This lemma is a modification of the the Nagumo-Westphal

Lemma [11] to include functions that are C' except on a set of measure zero where they

may be only C'. A condition on the spatial derivative replaces the condition involving a

parabolic operator on this set. This lemma is a direct extension of the result by Nagumo

and Westfal; thus, it is presented without proof.

LEMMA 4.1. Let z(x, t) be a continuous function that is differentiable except on a finite

number of curves. Suppose

(16) P[z] > 0
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in the regions where z is differentiable, while z satisfies

(17) (z)(X, t) = lim zxt > lir Oz(,t) = (z)+(X, t)
zTX Ox IX ax

for curues (x, t) = (X(t), t) on which z is continuous but not differentiable. When these

conditions are satisfied along with

(18) z>u for (x,t) EII,

then z > u throughout D.

The implications of this lemma at discontinuities on the choice of the bounding function
are demonstrated in Figure 1. The jump in the first derivative with respect to x is larger on

x - X(t)

FIG. 1. Dzscontinuous Upper Bounding Function

the left of (x,t) = (X, t) than on the right.

4.2. Analysis of w: Continuous Regions. The results in this section require a con-
vex flux function. Let Q(v) af( . The assumption of convex flux means

ev

Q'(v) > const

for all v and for a positive constant independent of e where Q'(v) = - We also assume

that Q'(v) is bounded above.

The shock speed S(t) and the values of Q(u) are related. The mean value theorem states

that

(19) S(t) = Q(U)

5



for some intermediate function 0(t) in the open interval ]UR, UL[. We will assume the

slightly more restrictive case of U in the closed interval [UR + A, UL - A], where A is a
positive constant. This relationship between S and Q will be exploited in the proof of the

following lemma.

LEM MA 4.2. There is an x, close enough to r and an co small enough, such that for

each region S2, we may construct a specific form of w to satisfy inequality (16).

Proof. First some algebraic details are discussed. Let i = Ix - rl/v. Differentiation of

w results in
01OpKS:,- -K 1

wt = av + (' + OP.&P-) eKe,

9pK -Kew= -- iP, -le-Kr

and

( p(p -1)K.' P- + WPK 2 ,2(pl)iP)

We use the mean value theorem to obtain f(U+w). = Q(U+w)w. + (Q(U) +wQ')U., where

Q' is evaluated at some function between U and U + w. The parabolic operator applied to

the bounding function is

P[U + w] = wt + Qw + Q'wU: - cU - cw,, - R(U + w)

or

e 1
P[U + wL] = r, + T2 + - 7 3 + 74,,

where

T, = a - U.. + atQ'U.,

2= [9' + OQU,]e - K i - R,

T3 =-O 2 p 2 2
(p

- 1))e-KIP

and

7,4 = 9Kp[(S - Q) P-l + (p - 1)p-P2]e-KV.
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We will consider two cases based on the two forms of w to verify that (16) is satisfied:

Case I. When x E Po we let w = wo, where

wo = act.

We choose a large enough and T small enough so that ri > 0. Inequality (16) holds in this
case since r2, r3, 74 = 0.

Case II. When x E f&i we let w = wl, where

.1
2

w, = ad + ye -

Here, 6 and r. are positive constants independent of e, and A is a positive function of t. The
term r is positive from the choices in Case I; thus, it is sufficient to consider only 7 2, 73 and
74. We choose v >> c. For example, we could use v = el ln(e)I. Then, we assume that co is
small enough that With this choice of v, it is sufficient to show that 74 is bounded below by

a positive constant that is independent of e.

First we wvill establish a lower bound for S(t) - Q(U + w). These properties are based
on the fluid dynamics properties of the problem. Namely, Q(u) is the speed at which the

characteristics of u travel. The characteristics will be traveling faster than the shock for
x to the left of F, and slower than the shock for x to the right of r. This means that
S(t) - Q(U + w) is positive for 5 > bo(ic). The relation between 5; and S - Q is depicted
in Fig 2. (The precise shape of the curve cannot be known without more information about
Q.) The location of bo(K) moves closer to the origin as r increases. Also, mul',ilying S - Q
by 5; reduces the variation near the origin. It is clear that we can choose r large enough such

that

1+ (S - Q)5;>

0

We now have specific forms for the bounding function in each of the domains. Next we
must show that we can satisfy inequality (17) and C' continuity with U + w with the scaling

and r of the previous lemma.

4.3. Analysis of w: Discontinuities. First we will establish the C' continuity by
choosing the parameters for the bounding function. Condition (18) will also be satisfied by

the choices in this lemma.

LEMMA 4.3. We may choose the parameters in w, to sahsfy (18) and such that w is
Co.
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FIG. 2. Ezample form for S-Q

Proof. To obtain C' continuity let E = y.

The result will follow pro-iding (18) is satisfied for (x, t) E H. This relation clearly holds

except possibly for (x,t) E -r0 . In this region it is necessary to impose some restriction on

g - go. Assume that the viscous profile of the shock-layer is of an exponential type that is

bounded by the function w presented in this proof. This is not a severe restriction, since a

layer with a profile like that of tanh[-(x/e)] (a solution to Burgers' equation) is suitable. E

THBOREM 4.4. Assume that g and go with ther first and second dervatzves are bounded

independent of E except that go has a jump at (x, t) = (170 , 0) and g may have derivatives

bounded dependng on e for (x, t) c 7to. Suppose w is constructed from Wo and w, of Lemma

4.2. Also assume that U, is continuous across (x, t) = (r, t). Then there Zs a positive Co such

that

(20) U+W>u

for (x,t) E D when co > e > 0.

Proof. We will have only one case to consider based on imposing (17) on the curve

(x,t) = (P(t),t). Consider a modified distance function ^ = Ix - r + 6vl/v. Observe that

for positive 6, the term w, from equation (4.2) is negative and has magnitude 0(6). If we

take 8 asymptotically close to zero, then we still satisfy this condition. Thus, by taking the

limit, we may return to the original basis function since lirl 0 x = X . 0

Remark 2. The constraint on U across (x,t) = (F,t) can be relaxed somewhat. This

constraint was imposed so that 6 could be taken asymptotically close to zero in the proof.
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With a more careful choice of & this constraint can be eased.

COROLLARY 4.5. Under the conditions of the theorem,

when co > e > 0 and u(e) is chosen as above.

This result follows directly using symmetric arguments to obtain a lower bound.

5. Implications. A direct result of this theorem is an upper bound on the size of the

shock-layer. In this context, the shock-layer is defined as the region in which the solution to

(1) differs from the solution to (2) by more than a specified amount. Namely, it is the region

in which

(22) u - U >

for some positive a. As reflected in the following corollaries, there are different results

depending on whether a is a function of e or not. This result follows directly from the
theorem. The following corollary extends this result to the case when a is independent of 6

and !s a direct result of Corollary 4.5.

COROLLARY 5.1. Suppose the conditions of Theorem 4.5 obtain. Let ( (t),t) be the

independent variables fo- which Inequality (22) is satisfied. If a is a constant independent of

e then there is an co small enough so that ju - U1 < a when

Ip(t) - r(t)l < O(v)

forco > e> 0.

When we define the shock-layer as the region such that

then there is a positive co such that

1i(t) - P(t)l < O(eln(e))

for c0 > e> 0.

Physically motivated domain decomposition algorithms can be based on ideas presented

in the analysis discussed herein. The computational domain can be partitioned into subdo-

mains that have different physical behavior. Inside each of these regions different modeling

equations (and hence different numerical methods) are used so computational effort is con-

centrated on the relevent physics [10], [2]. Global error bounds have been developed for these

domain decomposition methods [9]. In addition, the general idea of using different modeling

equations can be extended to systems of equations [3].
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